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Abstract
This paper treats the dynamics and scattering of a model of coupled oscillating
systems, a finite dimensional one and a wave field on the half line. The
coupling is realized producing the family of self-adjoint extensions of the
suitably restricted self-adjoint operator describing the uncoupled dynamics.
The spectral theory of the family is studied and the associated quadratic forms
constructed. The dynamics turns out to be Hamiltonian and the Hamiltonian is
described, including the case in which the finite-dimensional systems comprise
nonlinear oscillators; in this case, the dynamics is shown to exist as well.
In the linear case, the system is equivalent, on a dense subspace, to a wave
equation on the half line with higher order boundary conditions, described by
a differential polynomial p(∂x) explicitly related to the model parameters. In
terms of such structure, the Lax–Phillips scattering of the system is studied.
In particular, we determine the scattering operator, which turns out to be
unitarily equivalent to the multiplication operator given by the rational function
−p(iκ)∗/p(iκ), the incoming and outgoing translation representations and the
Lax–Phillips semigroup, which describes the evolution of the states which are
neither incoming in the past nor outgoing in the future.

PACS numbers: 02.30.Sa, 02.30.Tb, 03.65.Db, 03.65.Nk

1. Introduction

In this paper, we investigate the spectral theory, dynamics and Lax–Phillips scattering for an
abstract system which models the interaction between a finite-dimensional linear subsystem
and an infinite-dimensional wave field on a half line. We will call such systems generalized
Lamb models in that they extend the standard Lamb model (see [10]) that will be introduced
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shortly. Although our main concern is with linear oscillators, we will describe some properties
of the models in the anharmonic case also.

To introduce our models, let us consider an n-dimensional Lagrangian system linearized
around a certain equilibrium point. Its equations of motion are given by

Gÿ = Hy

where y ∈ R
n is the displacement from the given equilibrium point (for reference, y = 0), and

the matrices G and H represent the quadratic approximation of kinetic and potential energy
around the equilibrium point. G is positive definite and both matrices are symmetric with
respect to the standard inner product in R

n. For technical and theoretical reasons, it is more
useful to endow R

n with the inner product given by G. With respect to this inner product, the
matrix L = G−1H is symmetric and the Lagrangian equation takes the form

ÿ = Ly

with L symmetric with respect to the G inner product. The case of a chain of harmonic
oscillators is well known and yields to a Jacobi matrix for the operator L.

Analogously, let us consider the wave equation on the half line. To be definite let us
consider Neumann boundary condition at the origin. Denoting with �N the one-dimensional
Laplacian with homogeneous Neumann boundary conditions at the origin, the wave field (we
have posed equal to one the wave velocity) evolves according to the wave equation

φ̈ = �Nφ.

So we have two decoupled second-order equations for two different oscillating systems, the
finite dimensional one with generator L and the infinite dimensional one with generator �N .

Thus, on the direct sum L2(R+) ⊕ R
n we have the self-adjoint operator

A0 = �N ⊕ L

and the corresponding abstract wave equation

�̈ = A0�.

In a heuristic way, a coupling between the two oscillating systems could be given by posing
a constraint between boundary values of the wave field at the origin and the displacement of
the finite-dimensional system. The prototype of this coupling is furnished by the well-known
Lamb model where a semi-infinite string is coupled to a single particle oscillating in the
transverse direction (see section 4.1 for the general case of a chain of oscillators); the particle,
with mass M, is subjected to the tension T of the string at the origin and to a restoring harmonic
force with spring constant K, so that the formal equations are given by the system

φ̈(t, x) = φ′′(t, x) x > 0,

Mÿ(t) = −Ky(t) + T φ′(t, 0+),

plus the constraint

φ(t, 0+) = y(t).

This model was proposed by Horace Lamb in 1900 as an example of dissipation in (subsystems
of) conservative systems. In fact, it is possible to decouple field and particle dynamics, and
the particle component satisfies a reduced equation which turns out to be, for t > 0,

Mÿ(t) + 2T ẏ(t) + Ky(t) = T (φ′
0(t, 0+) + φ̇0(t, 0+)).

The forcing term on the right-hand side depends on the evaluation at the origins of the free
evolution for the wave field of the initial data φ0, φ̇0. Thus, for initial data of compact support
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the forcing term is a pure transient definitively vanishing, and the reduced dynamics for the
particle coincides for large times with that of a damped harmonic oscillator, so that the effect
of interaction between particle and field reduces to damping only. This means exponentially
fast return to equilibrium of the finite-dimensional subsystem and correspondingly a neat
transfer of energy to the field. This relaxation property towards the equilibrium position of
the finite-dimensional component is always true when the corresponding self-adjoint operator
has empty point spectrum (see remark 6.1) as it is the case in the Lamb model. The result has
various generalizations to anharmonic oscillators (see [8]).

Some tridimensional models reduce themselves to generalized Lamb models due to
symmetry. The case of an elastic spherical shell coupled to the acoustic field when only
radial oscillations are allowed is treated in section 4.3, and it yields to a nontrivial generalized
Lamb model. Another issue of interest of these coupled systems is given by the fact that some
linear models of classical and quantum field theory reduce themselves in the ultraviolet limit,
and after due renormalizations, to generalized Lamb models. For example, the Schwabl–
Thirring (see [16]) model when restricted to its monopole sector (the only one where it is not
trivial) and after a spring constant renormalization turns out to be equivalent to a Lamb model
(see [12]). A similar phenomenon occurs for the Pauli–Fierz model describing the interaction
of a charged oscillator with the electromagnetic field in dipole approximation and after mass
renormalization (see [3]). In this case, however, the reduction of the dynamics on its nontrivial
part yields a boundary condition different from that of the Lamb model (see example 4.2).

This discussion of motivating examples, and relevant studies existing in the literature,
shows however that the usual formulation is partly formal in that it is not clear what should be
the functional setting of the Lamb system in the first place, and secondarily its Hamiltonian
formulation, if any exists.

A guide to set rigorously these questions in this and in more general situations is suggested
by an analysis of the coupling between field and particle. The idea is to restrict the uncoupled
vector operator A0 to the linear variety defined by the constraint existing between field and
subsystem; the uncoupled operator on this linear variety is no more self-adjoint but it is
symmetric with defect indices (1, 1). All possible self-adjoint extensions different from A0

itself correspond to a well-defined coupling or interaction between two subsystems. The case
of the Lamb model, for example, corresponds to the closed linear variety φ(0+) = y. The
most general boundary condition still producing a self-adjoint operator, as we will see, is of
the kind θφ′(0+) + φ(0+) = w · y, where θ ∈ R and w is a given vector in R

n. The case of
a chain of harmonic oscillators one of which coincides with the boundary point of the string,
which is the more obvious generalization of the Lamb model, corresponds to a vector w with
just a single entry nonvanishing and to θ = 0. A generic w corresponds to nonlocal coupling
between string and more than one oscillator, i.e. the interaction is not ‘nearest neighbour’.
Our first concern is to give a rigorous account of this construction and to explicitly describe
the interacting system so obtained (see theorem 2.1) as well as its spectral properties (see
theorem 2.2). The interacting operator so constructed is a singular perturbation of the self-
adjoint operator A0, related to the class of one-dimensional point interactions, or better point
interaction with inner structure previously studied in different context and with a different
formalism by many authors (see, e.g., [1, 9, 13] and references therein). In passing, we note
that the coupled operator we study corresponds to a boundary value problem for the wave field
only, but with an eigenparameter-dependent boundary condition (see remark 2.5); this sort of
parameter-dependent boundary value problems are well known in the literature, both physical
and mathematical. However, we do not follow this road to the study of spectral and scattering
properties of the coupled operator.



15176 M Bertini et al

As a byproduct of the construction, we obtain in section 3 the Hamiltonian structure of the
system (see theorem 3.2), which we generalize to the case of anharmonic oscillators, giving
conditions for the existence of global flow (see remark 3.3). As far as we know, a completely
rigorous description of the Hamiltonian structure of such type of systems has been lacking
up to now, whereas interesting, but formal treatments are scattered in the literature (see, for
example, [7, 12]).

In the case the symmetric operator L has no degenerate eigenvalues we show that the
dynamics of the system is equivalent, for a dense set of smooth initial data, to a reduced
dynamics of a wave equation on the half line which incorporates the interaction with the finite-
dimensional systems through a higher order boundary condition of the kind p(∂x)φ(t, 0+) = 0,
where the polynomial p is explicitly related to the parameters entering into the definition of the
model (see theorem 5.1). This is a technical result, useful for the analysis of the Lax–Phillips
scattering for the system, which is the main topic of the remaining part of the paper.

In section 6, in the case of empty point spectrum, we determine the incoming (R−) and
outgoing (R+) translation representations which make the dynamics unitarily equivalent to the
translation on L2(R) defined by T tf (x) := f (x − t). This provides the scattering operator
S∗

p for the system by the relation S∗
p = R+(R−)−1. Moreover, S∗

p turns out to be unitarily
equivalent to the multiplication operator given by the rational function −p(iκ)∗/p(iκ). In
section 7, the Lax–Phillips semigroup Zt, t � 0, which describes the evolution of the states
which are neither incoming in the past nor outgoing in the future is completely characterized.
It acts on a finite-dimensional vector space, whose dimension coincides with the degree of the
polynomial p, by Zt = e−tB , where the spectrum of the generator B is made of the resonances
of the system. Such resonances correspond to the roots of the polynomial p.

2. Singular perturbations of the free dynamics

Let us begin with some definitions. We denote by L2(R+) the Hilbert space of square-integrable
functions on the half line (0, +∞) and by H 1(R+) and H 2(R+) the Sobolev spaces:

H 1(R+) := {φ ∈ L2(R+) : φ′ ∈ L2(R+)},
H 2(R+) := {φ ∈ L2(R+) : φ′, φ′′ ∈ L2(R+)}.

Here, the prime φ′ denotes a spatial derivative. With a dot, φ̇, we will denote a time derivative.
We then define H 2

N(R+) as the subspace of H 2(R+) of functions which satisfy homogeneous
Neumann boundary conditions at zero, i.e.,

H 2
N(R+) := {φ ∈ H 2(R+) : φ′(0+) = 0}.

We denote by 〈·, ·〉2 and by ‖ · ‖2 the usual scalar product and the corresponding norm on
L2(R+).

Given the n-dimensional Hilbert space h with scalar product 〈·, ·〉 and corresponding norm
‖ · ‖, and given the symmetric operator L : h → h, we consider the self-adjoint operator

A0 : H 2
N(R+) ⊕ h ⊂ L2(R+) ⊕ h → L2(R+) ⊕ h, A0(φ, y) := (φ′′, Ly).

Regarding the spectrum of A0 one has

σess(A0) = σac(A0) = (−∞, 0], σpp(A0) = σ(L).

In order to couple the two dynamical systems described by the equations φ̈ = φ′′ and ÿ = Ly,
we define the continuous and surjective linear operator

τ : H 1(R+) ⊕ h → C, τ (φ, y) := φ(0+) − 〈w, y〉, w ∈ h,
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and then we consider the closed symmetric operator Ȧ0 obtained by restricting A0 to the
kernel of τ . Ȧ0 has deficiency indices (1, 1) and we are interested in its self-adjoint extensions
different from A0 itself, which we parametrize by the real extension parameter θ . Thus to each
quadruple (h, L,w, θ) corresponds a different generalized Lamb model. The next theorem
completely characterizes such models.

Theorem 2.1. For any θ ∈ R the linear operator

A : D(A) ⊂ L2(R+) ⊕ h → L2(R+) ⊕ h

defined by

D(A) := {(φ, y) ∈ H 2(R+) ⊕ h : θφ′(0+) + φ(0+) = 〈w, y〉},

A(φ, y) := (φ′′, Ly + wφ′(0+))

is a self-adjoint extension of Ȧ0 and its resolvent is given by

(−A + z)−1 = (−A0 + z)−1 + (θ + 	(z))−1Gz ⊗ Gz∗ ,

where

	(z) := −
(

± 1√
z

+ 〈w, (−L + z)−1w〉
)

, ±Re
√

z > 0

and

Gz =
(

±e∓√
zx

√
z

,−(−L + z)−1w

)
, ±Re

√
z > 0.

Proof. We will make use of the mathematical procedure developed in [14] (see also [4],
theorem 2.2, for a similar proof in the case of a one-dimensional model in acoustics).

For any z ∈ ρ(A0), let us consider the two linear continuous operators:

Ğ(z) : L2(R+) ⊕ h → C, Ğ(z) := τ(−A0 + z)−1,

G(z) : C → L2(R+) ⊕ h, G(z) := Ğ(z∗)∗.

Since (
− d2

dx2
+ z

)−1

: L2(R+) → H 2
N(R+)

has kernel

GN(z; x1, x2) = ±e∓√
z|x1−x2| + e∓√

z(x1+x2)

2
√

z
, ±Re

√
z > 0,

the operators Ğ(z) and G(z) are represented by the vectors Gz∗ and Gz, respectively, where

Gz =
(

±e∓√
zx

√
z

,−(−L + z)−1w

)
, ±Re

√
z > 0.

Note that

Ran(G(z)) ∩ D(A0) = {0}. (2.1)

Now we define, for any z ∈ ρ(A0), the map

	(z) : ρ(A0) → C, 	(z) := −τG(z),
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i.e.,

	(z) := −
(

± 1√
z

+ 〈w, (−L + z)−1w〉
)

, ±Re
√

z > 0.

At first, let us note that the function 	 satisfies the relation

	(z) − 	(w) = (z − w) Ğ(w)G(z). (2.2)

Indeed,

	(z) − 	(w) = τ(G(w) − G(z))

and, by first resolvent identity and by the definition of G(z),

(z − w)(−A0 + z)−1G(z) = G(w) − G(z).

Relation (2.2) implies that

R(z) := (−A0 + z)−1 + (θ + 	(z))−1Gz ⊗ Gz∗

satisfies the first resolvent equation

R(w) − R(z) = (z − w)R(w)R(z). (2.3)

By the definitions of Ğ(z) and G(z), and since 	(z)∗ = 	(z∗), one obtains

R(z)∗ = R(z∗). (2.4)

Moreover, by (2.1), the linear operator R(z) is injective. Thus,

A := −R(z)−1 + z

is well defined on the domain

D(A) := Range(R(z)).

By (2.3) such a definition is z-independent. By (2.4), A is symmetric and is self-adjoint since

Range(−A ± i) = L2(R+) ⊕ h

by construction. We have thus defined the self-adjoint operator

D(A) := {
(φz, yz) + (θ + 	(z))−1(φz(0+) − 〈w, yz〉)Gz, φz ∈ H 2

N(R+)
}
,

(−A + z)(φ, y) := (−A0 + z)(φz, yz).

This implies

φ′(0+) = −(θ + 	(z))−1(φz(0+) − 〈w, yz〉)
and

φ(0+) = φz(0+) ∓ 1√
z
φ′(0+).

Therefore,

θφ′(0+) = (θ + 	(z))φ′(0+) − 	(z)φ′(0+)

= −φz(0+) + 〈w, yz〉 +

(±1√
z

+ 〈w, (−L + z)−1w〉
)

φ′(0+)

= −φ′(0+) + 〈w, (yz + (−L + z)−1w〉φ′(0+))

= −φ(0+) + 〈w, y〉.
Posing

A(φ, y) ≡ (A1(φ, y), A2(φ, y))
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one obtains

A1(φ, y)(x) = φ′′
z (x) ∓ zφ′(0+)

e∓√
zx

√
z

=
(

φz(x) ∓ φ′(0+)
e∓√

zx

√
z

)′′
= φ′′(x)

and

A2(φ, y) = Lyz + zφ′(0+)(−L + z)−1w

= Ly + (−L(−L + z)−1 + z(−L + z)−1)wφ′(0+)

= Ly + wφ′(0+).

�

Let us define the (eventually empty) set

σw(L) := {
λ ∈ σ(L) : w ∈ h⊥

λ

}
,

where hλ denotes the spectral subspace relative to λ.

Theorem 2.2.

σess(A) = σac(A) = (−∞, 0],

σpp(A) = σw(L) ∪ {λ ∈ ρ(L) ∩ (0, +∞) : θ + 	(λ) = 0}.

Proof. The properties regarding the essential and continuous spectrum are more or less
standard and can be obtained proceeding as in [4], theorem 2.3. Let us now come to the point
spectrum.

1. Let λ ∈ σ(L). Then (0, yλ) is an eigenvector if yλ solves the equations

Lyλ = λyλ, 〈w, yλ〉 = 0,

thus λ ∈ σw(L).
2. Let λ > 0. Then φλ(x) := e−√

λ x solves φ′′
λ = λφλ. Thus (φλ, yλ) is an eigenvector if

λ and yλ solve the equations

Lyλ −
√

λ w = λyλ, −θ
√

λ + 1 − 〈w, yλ〉 = 0. (2.5)

If λ ∈ ρ(L) then

yλ = −
√

λ(−L + λ)−1w

and λ must solve the equation

−θ
√

λ + 1 +
√

λ〈w, (−L + λ)−1w〉 = 0.

If otherwise λ ∈ σ(L) then (2.5) can be solved only if w ∈ h⊥
λ by yλ = y

‖
λ +y⊥

λ , where y
‖
λ ∈ hλ

and y⊥
λ ∈ h⊥

λ are defined by

y⊥
λ := −

√
λ(−Lλ + λ)−1w, Lλ := (1 − Pλ)L(1 − Pλ) : h⊥

λ → h⊥
λ .

Thus λ ∈ σw(L) and moreover it has to solve the equation

−θ
√

λ + 1 +
√

λ〈w, (−Lλ + λ)−1w〉 = 0.

�
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Remark 2.3. When σw(L) is empty, i.e. in the generic situation, the point spectrum of the
interacting operator A is quite different from the point spectrum of the decoupled one, A0.
In particular, the free eigenvalues of the finite-dimensional subsystem disappear, and in their
place the real solutions of the equation 	(λ) + θ = 0 could possibly appear. In fact, as we
shall see in section 6, the disappeared eigenvalues, which for the noninteracting operator A0

are immersed in the continuum spectrum, become resonances of the interacting operator.

Remark 2.4. In the case σw(L) �= ∅ we can suppose, without loss of generality, h = h1 ⊕ h2,

L = L1 ⊕ L2 and w = w1 ⊕ 0. Then for the self-adjoint extensions given in theorem 2.1 we
have A = A1 ⊕ L2, where

A1 : D(A1) ⊂ L2(R+) ⊕ h1 → L2(R+) ⊕ h1

is defined by

D(A1) := {(φ, y1) ∈ H 2(R+) ⊕ h1 : θφ′(0+) + φ(0+) = 〈w1, y1〉h1},
A1(φ, y1) := (φ′′, L1y1 + w1φ

′(0+)),

i.e., the dynamics on h2 is trivial, in the sense that it is decoupled from the field one. Thus, the
hypothesis σw(L) �= ∅ is equivalent to the nonexistence of a subspace on which the particles
and the field are uncoupled. In other words, the points of the pure point spectrum belonging
to σw(L) correspond to ‘radiationless motions’, in which the interaction between oscillators
and field is decoupled. Similar exceptional solutions in which the subsystem oscillates at
a normal frequency of the decoupled system are known, for example, also in the classical
electrodynamics of an extended charge where they are called Bohm–Weinstein modes. In
that case, the coupling between field and particle is defined by the charge density ρ(x) of
the particle, and the condition to have radiationless modes of frequency ω is that the Fourier
transform of the form factor satisfies ρ̂(ω) = 0.

Remark 2.5. The operator A can be interpreted in a formal way as a differential operator
with an eigenvalue-dependent boundary condition. Let us consider the secular equation for the
operator A and in particular its finite-dimensional component, and couple it with the boundary
condition for elements of the domain of the operator. We get

Ly + wφ′(0+) = λy θφ′(0+) + φ(0+) = 〈w, y〉.
From the first equation it follows y = −φ′(0+)(L − λ)−1w and substituting into the second
equation one gets

(θ + 〈w, (L − λ)−1w〉)φ′(0+) + φ(0+) = 0

which is, formally, a Robin boundary condition for the field at the origin. The condition
contains the eigenvalue λ and it is known in the physical and mathematical literature as an
energy-dependent boundary condition. From this point of view, the boundary value problem
for the coupled operator can be reduced to a boundary value problem for the field only, but
eigenvalue dependent.

By the way note that, as it should be, the above eigenvalue-dependent boundary condition
is equivalent to the eigenvalue equation in theorem 2.3, 	(λ) + θ = 0, as it is immediately
seen by the position

√
z = λ.

3. The Hamiltonian structure

In this section, we are interested in describing the Hamiltonian structure of the dynamical
system related to the abstract wave equation:

�̈ = A�, � ≡ (φ, y).
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The solution of the corresponding Cauchy problem is then given by the symplectic flow

generated by the linear operator
(0 1
A 0

)
.

We begin by determining the quadratic form corresponding to −A:

Theorem 3.1. Let us denote by Q the quadratic form of −A.
1. If θ = 0 then

D(Q) = {(φ, y) ∈ H 1(R+) ⊕ h : φ(0+) = 〈w, y〉},
Q : D(Q) → R, Q(φ, y) = ‖φ′‖2

2 − 〈Ly, y〉.
2. If θ �= 0 then D(Q) = H 1(R+) ⊕ h and

Q : H 1(R+) ⊕ h → R, Q(φ, y) = ‖φ′‖2
2 − 〈Ly, y〉 − 1

θ
|φ(0+) − 〈w, y〉|2.

Proof. For any (φ, y) ∈ D(A) one has

Q(φ, y) = ‖φ′‖2
2 − 〈Ly, y〉 + (φ′)∗(0+)(φ(0) − 〈w, y〉)

= ‖φ′‖2
2 − 〈Ly, y〉 − θ |φ′(0+)|2.

Thus, the proof is completed if Q is bounded from below and closed. This follows from

|φ(0+)|2 � a‖φ‖2
2 + b‖φ′‖2

2, a > 0, 0 < b < 1.

�

Let us make D(Q) ⊂ L2(R3) ⊕ h a Banach space with norm

‖(φ, y)‖2
Q := Q(φ, y) + (sup σ(A) + 1)

(‖φ‖2
2 + ‖y‖2

)
and define

H◦ := D(Q) ⊕ L2(R+) ⊕ h.

Then one has the following:

Theorem 3.2. The linear operator,(
0 1
A 0

)
: D(A) ⊕ D(Q) ⊂ H◦ → H◦,

is the generator of a strongly continuous group of evolution

Ut
◦ : H◦ → H◦

which preserves the energy

E((φ, y), (φ̇, ẏ)) := 1
2

(
Q(φ, y) + ‖φ̇‖2

2 + ‖ẏ‖2
)
.

Such an operator is the Hamiltonian linear vector field corresponding to the quadratic
Hamiltonian E via the canonical symplectic form on L2(R+) ⊕ h ⊕ L2(R+) ⊕ h given by

((φ1, y1, φ̇1, ẏ1), (φ2, y2, φ̇2, ẏ2)) := 〈φ1, φ̇2〉2 − 〈φ2, φ̇2〉2 + 〈y1, ẏ2〉 − 〈y2, ẏ2〉.

Proof. The operator A is self-adjoint and bounded from above. Thus, the result concerning
evolution generation follows from the theory of abstract wave equations (see e.g. [6],
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chapter 2, section 7). The results about the Hamiltonian structure follow from the theory
of linear Hamiltonian systems in infinite dimensions (see e.g. [5], chapter 2). �

Remark 3.3. The above results can be immediately extended to a nonlinear situation. Indeed,
given the potential function V let us consider the Hamiltonian

H : H◦ → R,

where

H((φ, y), (φ̇, ẏ)) = 1
2

(‖φ′‖2
2 + ‖φ̇‖2

2 + ‖ẏ‖2
)

+ V (y)

when θ = 0 and

H((φ, y), (φ̇, ẏ)) = 1

2

(
‖φ′‖2

2 + ‖φ̇‖2
2 + ‖ẏ‖2 − 1

θ
|φ(0+) − 〈w, y〉|2

)
+ V (y)

when θ �= 0.
The nonlinear Hamiltonian vector field corresponding, via the canonical symplectic form

on L2(R+) ⊕ h ⊕ L2(R+) ⊕ h, to H is given by

XH : D(A) ⊕ D(Q) ⊂ H◦ → H◦,
XH ((φ, y), (φ̇, ẏ)) := (φ̇, ẏ, φ′′,−∇V (y) + wφ′(0+)).

Obviously XH = XE +B, where XE is the linear Hamiltonian vector field corresponding to the
quadratic Hamiltonian E and B is vector field B((φ, y), (φ̇, ẏ)) := (0, 0,−(Ly + ∇V (y)), 0).
Thus, if V is twice differentiable then by Segal’s existence theorem (see [17]) XH generates a
local continuous nonlinear symplectic flow on H◦. Since Q is bounded from below, if

V (y) � c1‖y‖2 − c2, c1 > 0, c2 � 0,

then such a flow is global.

4. Examples

Example 4.1. The dynamics of the Lamb model (see [10]), given by the equations

φ̈(t, x) = φ′′(t, x)

Mÿ(t) = −Ky(t) + T φ′(t, 0+)

y(t) = φ(t, 0+),

is described by the self-adjoint extension A corresponding to

dim h = 1, 〈x, y〉 = M

T
x∗y, Ly = − K

M
y, w = T

M
, θ = 0.

The similar model with n point masses

φ̈(t, x) = φ′′(t, x)

M1ÿ1(t) = −K1(y1(t) − y2(t)) + T φ′(t, 0+)

M2ÿ(t)2 = −K2(y2(t) − y3(t)) + K1(y1(t) − y2(t))

...

Mn−1ÿn−1(t) = −Kn−1(yn−1(t) − yn(t)) + Kn−2(yn−2(t) − yn−1(t))

Mnÿn(t) = −Knyn(t) + Kn−1(yn−1(t) − yn(t))

y1(t) = φ(t, 0+)
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is described by the self-adjoint extension A corresponding to

dim h = n, 〈x, y〉 = 1

T

n∑
j=1

Mjx
∗
j yj ,

L =




− K1
M1

K1
M1

0 0 · · · 0
K1
M2

−K1+K2
M2

K2
M2

0 · · · 0

0 K2
M3

−K2+K3
M3

K3
M3

· · · 0

...
. . .

...

0 · · · Kn−3

Mn−2
−Kn−3+Kn−2

Mn−2

Kn−2

Mn−2
0

0 · · · 0 Kn−2

Mn−1
−Kn−2+Kn−1

Mn−1

Kn−1

Mn−1

0 · · · 0 0 Kn−1

Mn
−Kn−1+Kn

Mn




,

w =
(

T

M1
, 0, . . . , 0

)
, θ = 0.

The corresponding Hamiltonian is given by

H : {(φ, y) ∈ H 1(R+) ⊕ C
n : φ(0+) = y1} ⊕ L2(R+) ⊕ C

n → R

H((φ, y), (φ̇, ẏ)) := 1

2

(
‖φ̇‖2

2 + ‖φ′‖2
2 +

1

T

n∑
k=1

Mk|ẏk|2 +
1

T
�y ·y

)
,

where the matrix � is given by

� =




K1 −K1 0 · · · 0

−K1 K1 + K2 −K2 · · · 0

...
. . .

...

0 · · · −Kn−2 Kn−2 + Kn−1 −Kn−1

0 · · · 0 −Kn−1 Kn−1 + Kn




and · denotes the standard inner product in C
n.

In the following examples we describe models, from classical electrodynamics and
theoretical acoustic respectively, which are not interpretable as standard Lamb models in
that θ �= 0.

Example 4.2. The renormalized Pauli–Fierz model.
A three-dimensional charged oscillator characterized by frequency ω, mass m and electric

charge e interacting with the electromagnetic field in dipole approximation has a dynamics
described, in the point limit and after mass renormalization, by a well-defined self-adjoint
operator which couples particle momentum and vector electromagnetic potential. Dynamics
and its main properties, classical and quantum, are constructed and studied in [3]. This is
the point limit of the Pauli–Fierz model for the case of a quadratic potential energy. Due to
the dipole approximation, the action of this operator is nontrivial (i.e. different from the free
uncoupled dynamics) only on the radial component of the field, and by standard decomposition
using vector spherical harmonics it turns out that on this monopole subspace the restricted
dynamics for every couple (φ, p) constituted by a component of the vector potential on the
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nontrivial subspace, and a corresponding component of the particle momentum, is given by
the coupled system

φ̈(t, r) = φ′′(t, r)

p̈(t) = −3m

2e
ω2φ(t, 0+)

φ′(t, 0+) +
3m

2e2
φ(t, 0+) = 1

e
p(t).

Writing the field φ which appears in the evolution equation for p in terms of its derivative φ′

and p by means of the boundary condition, one obtains

φ̈(t, r) = φ′′(t, r)
p̈(t) = −ω2p(t) + eω2φ′(t, 0+)

2e2

3m
φ′(t, 0+) + φ(t, 0+) = 2e

3m
p(t).

Let us remark here that by Newton’s law ṗ = −mω2q, where q is a component of the particle
position. Thus, the Cauchy initial datum for ṗ is obtained from the initial position.

In conclusion, the dynamics of the renormalized Pauli–Fierz model in dipole
approximation and with quadratic external potential is described by the self-adjoint operator
A corresponding to

dim h = 1, 〈x, y〉 = 2x∗y
3mω2

, Ly = −ω2y, w = eω2, θ = 2e2

3m
.

The corresponding Hamiltonian is given by

H : H 1(R+) ⊕ C ⊕ L2(R+) ⊕ C → R

H((φ, p), (φ̇, ṗ)) := 1

2

(‖φ̇‖2
2 + ‖φ′‖2

2

)
+

1

3m

(
|ṗ|2
ω2

+ |p|2 −
∣∣∣∣3m

2e
φ(0+) − p

∣∣∣∣
2
)

.

As recalled in the introduction, a field–particle interaction which reduces to the standard
(θ = 0) Lamb model in the point limit and after spring constant renormalization is the
Schwabl–Thirring model, in which a scalar field interacts with a scalar oscillator (for details,
in a different framework, see [12]).

Example 4.3. A spherical elastic shell in the acoustic field.
Let us consider the exterior problem for a spherical shell of mass M, radius R0 and constant

surface density ρ = M

4πR2
0

undergoing radial motion only and interacting with an irrotational

acoustic field in the linear approximation. The shell is elastic, i.e. on every surface element
acts a restoring force proportional to the radius, and of Young modulus K. If small radial
oscillations around R0 are considered, introducing the variables ψ , related to the acoustic
potential φ by φ(R0 + r) = ψ(r)

r
, r > 0, and the radius R0 + R(t) and taking into account

the continuity of velocity φ′ of the acoustic field at the boundary, one obtains the equations of
motion (assuming propagation velocity equal to one)

ψ̈(t, r) = ψ ′′(t, r)
MR̈(t) = −KR(t) + 4πR0ρψ̇(t, 0+)

ψ ′(t, 0+)

R0
− ψ(t, 0+)

R2
0

= Ṙ(t).

This system can be converted to a generalized Lamb system by introducing the new variable
(in fact a sort of total momentum)

P := MṘ − 4πR0ρψ(0+).
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Rewriting the above equations in terms of the new variable P, expressing the field ψ which
appears in the evolution equation for P in terms of its derivative ψ ′ and P by means of the
boundary condition, one obtains

ψ̈(t, r) = ψ ′′(t, r)

P̈ (t) = − K

M + 4πR3
0ρ

P (t) − 4πKR2
0ρ

M + 4πR3
0ρ

ψ ′(t, 0+) − MR0

M + 4πR3
0ρ

ψ ′(t, 0+) + ψ(t, 0+)

= − R2
0

M + 4πR3
0ρ

P (t).

As regards the initial datum for Ṗ it can be recovered from the one for R as in the previous
example.

By defining ω2 := K
M

, the above system is described by the self-adjoint operator A
corresponding to

dim h = 1, 〈x, y〉 = x∗y
4πK

, Ly = − ω2

1 + R0
y,

w = −4πω2R2
0

1 + R0
, θ = − R0

1 + R0
.

The corresponding Hamiltonian is given by

H : H 1(R+) ⊕ C ⊕ L2(R+) ⊕ C → R

H((ψ, P ), (ψ̇, Ṗ )) := 1

2

(‖ψ̇‖2
2 + ‖ψ ′‖2

2

)
+

1

8πM

( |Ṗ |2
ω2

+
|P |2

1 + R0

)

+
1 + R0

2R0

∣∣∣∣ψ(0+) +
R2

0

1 + R0

P

M

∣∣∣∣
2

.

An analysis of interaction of elastic surfaces with acoustic fields from the point of view of
Lax–Phillips scattering theory is given in [2]. For the study of one-dimensional models in
acoustics in the framework of self-adjoint extensions we refer to [4].

5. Wave equations with high-order boundary conditions

From now on we will consider self-adjoint operators A which are self-adjoint extensions
corresponding (according to theorem 2.1) to L’s and w’s such that

{Lkw}n−1
0 is a basis in h. (5.1)

Note that the examples given in section 4 satisfy such hypothesis.
With respect to the orthonormal base obtained from {Lkw}n−1

0 by the Schmidt
orthogonalization procedure, the linear operator L is represented by a Jacobi matrix. However,
we prefer to consider here the unitary isomorphism h � C

n induced by the orthonormal
system {êi}n1 made of the eigenvectors of L. For any vector y ∈ h and for any linear operator
M : h → h we pose

y ≡ (y1, . . . , yn), M ≡




M11 · · · M1n

... · · · ...

Mn1 · · · Mnn


 .
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With these notation

w ≡ (w1, . . . , wn), L ≡




λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · 0 λn


 ,

where σ(L) = {λ1, . . . , λn}. We introduce the diagonal matrix

W ≡




w1 0 · · · 0
0 w2 · · · 0
...

. . .
...

0 · · · 0 wn


 ,

the Vandermonde matrix

V ≡




1 1 · · · 1
λ1 λ2 · · · λn

...
... · · · ...

λn−1
1 λn−1

2 · · · λn−1
n




and then we define

M := V W.

Since

det M =
∏

1�i<j�n

(λj − λi)
∏

1�i�n

wi �= 0,

our hypothesis (5.1) is equivalent to

λi �= λj and σw(L) = ∅.

Thus under our hypothesis the spectrum of L is simple and, by theorem 2.2, A has no eigenvalue
immersed in the continuous spectrum.

Let us denote by S(R+) the space of rapidly decreasing smooth functions on [0, +∞). We
define the dense subspace D ⊂ H◦ by

D := {(φ, y, φ̇, ẏ) ∈ H◦ : φ ∈ S(R+), φ̇ ∈ S(R+),

y = M−1v(φ), ẏ = M−1v(φ̇)},
where

v(φ) =
n∑

k=1

pk(∂x)φ(0+)êk,

and pk(∂x) is the differential operator with constant coefficients associated with the polynomial
recursively defined by

p1(z) = θz + 1, pk(z) = z2pk−1(z) − 〈w,Lk−2w〉z, k � 2.

The next theorem is the main technical point as regards the successive study of the Lax–Phillips
scattering of generalized Lamb models. It says that D is invariant under the flow Ut

◦ and that
on this dense subspace a generalized Lamb model is equivalent to a wave equation with a
high-order boundary condition at zero.
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Theorem 5.1. Let Ut
◦ be the strongly continuous group of evolution provided by theorem 3.2.

Then,

Ut
◦ : D → D

and

Ut
◦(φ0,M

−1v(φ0), φ̇,M−1v(φ̇0)) = (φ(t),M−1v(φ(t)), φ̇(t),M−1v(φ̇(t)))

where φ(t, x) solves the equations

∂ttφ(t, x) = ∂xxφ(t, x), x > 0,

p(∂x)φ (t, 0+) = 0

φ(0, x) = φ0(x), φ̇(0, x) = φ̇0(x).

(5.2)

Here, p(∂x) denotes the constant coefficients differential operator of degree 2n + 1 (2n if
θ = 0) associated with the polynomial

p(z) = pn+1(z) −
n∑

i,j=1

λn
i (V

−1)ijpj (z).

Proof. Let (φ(t), φ̇(t)) be the solution of the Cauchy problem

d2

dt2
(φ(t), y(t)) = A(φ(t), y(t)),

(φ(0), y(0)) = (φ0, y0),

(φ̇(0), ẏ(0)) = (φ̇0, ẏ0),

(5.3)

with (φ0, y0, φ̇0, ẏ0) ∈ D and let us suppose that (φ(t), φ̇(t)) is in S(R+) for all times.
Then deriving with respect to time the boundary condition 2k-times, k = 0, . . . , n, using
φ̈(t, 0+) = φ′′(t, 0+), one obtains the n + 1 equations

〈w,Lky(t)〉 = pk+1(∂x)φ(t, 0+), k = 0, 1, . . . , n.

The first n of such equations can be rewritten as

My(t) = v(φ(t))

so that

y(t) = M−1v(φ(t)), ẏ(t) = M−1v(φ̇(t))

for all times. Moreover, inserting the expression for y(t) into the nth equation one obtains
p(∂x)φ(t, 0+) = 0, so φ satisfies (5.2).

Conversely, let φ(t) be the solution of (5.2) and put

y(t) := M−1v(φ(t)).

Then, the n equations

〈w,Lky(t)〉 = pk+1(∂x)φ(t, 0+), k = 0, 1, . . . , n − 1.

are satisfied. The first equation says that (φ, y) and (φ̇, ẏ) are in D(A). Deriving each equation
two times with respect to time and using φ̈(t, 0+) = φ′′(t, 0+), one obtains

〈w,Lkÿ(t)〉 = pk+1(∂x)φ
′′(t, 0+) = pk+2(∂x)φ(t, 0+) + 〈w,Lkw〉φ′(t, 0+)

= 〈w,Lk(Ly(t) + wφ′(t, 0+)〉, k = 0, 1, . . . , n − 1,
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which implies ÿ(t) = Ly(t) + wφ′(t, 0+). So (φ, y) is the solution of (5.3). This also shows,
by unicity, that if the initial conditions of (5.3) are in S(R+) then they are in S(R+) for all
times. This justifies the assumption we made at the beginning of the proof. �

The next lemma makes the polynomial p appearing in the previous theorem more explicit.

Lemma 5.2.

p(z) = (θz + 1) det(z2 − L) − z

n∑
j=1

(
j∑

k=1

aj−k〈w,Lk−1w〉
)

z2(n−j),

where

a0 = 1, aj := (−1)j
∑

i1<···<ij

λi1 · · · λij , 1 � j � n.

Proof. Put

ãj := −
n∑

i=1

λn
i (V

−1)ij , 1 � j � n, ãn+1 := 1

and

bjk := −
n∑

i=1

λ
k−1−j

i |wi |2, 1 � k � n + 1, 1 � j � k − 1.

By the definitions of p(z), pk(z), ãj and bjk , one has

p(z) = (zθ + 1)

n+1∑
j=1

ãj z
2(j−1) + z


 n∑

j=1

bj,n+1z
2(j−1) +

n∑
j=2

ãj

j−1∑
i=1

bij z
2(j−1)




= (zθ + 1)

n+1∑
j=1

ãj z
2(j−1) + z

n∑
j=1


 n+1∑

k=j+1

bjkãk


 z2(j−1)

= (zθ + 1) pa(z
2) + zpb(z

2),

where

pa(z) =
n+1∑
j=1

ãj z
j−1 ≡

n∑
j=0

aj z
n−j ,

pb(z) =
n∑

j=1

b̃j z
j−1 ≡

n∑
j=1

bj z
n−j ,

b̃j = −
n∑

k=1

n+1∑
i=j+1

λ
i−j−1
k ãi |wk|2 = −

n+1∑
i=j+1

ãi〈w,Li−j−1w〉.

Since
n+1∑
j=1

ãj λ
j−1
k = λn

k −
n∑

j=1

n∑
i=1

λn
i (V

−1)ijVjk = λn
k − λn

k = 0,
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the eigenvalues λ1, . . . , λn are the roots of pa . Thus,

ãj =
∑

i1<···<in−j+1

(−1)n−j+1λi1 · · · λin−j+1, 1 � j � n, ãn+1 = 1.

�

The next result gives the relation between the roots of p and eigenvalues and resonances
of the self-adjoint extension A.

Lemma 5.3. Suppose det L �= 0 and let us define the couple (φ, y) by

φ(x) := ezx, y := M−1v(φ).

Then,

p(z) = 0 ⇐⇒




φ′′ = z2φ,

Ly + wφ′(0+) = z2y

θφ′(0+) + φ(0+) = 〈w, y〉,
�⇒ z ∈ C\iR.

Hence,

p(z) = 0, Re(z) � 0, ⇐⇒ z = −
√

λ, λ ∈ σpp(A) ∩ (0, +∞).

Proof. Since φ′′ = z2φ implies z �= 0 and p(0) = (−1)n det L �= 0, we can take z �= 0. By
the definition of (φ, y), we only need to show that

p(z) = 0 ⇐⇒ Ly + wz = z2y2.

Moreover, beside 〈w, y〉 = p1(z), one has

〈w,Lky〉 = pk+1(z) = z2pk(z) − 〈w,Lk−1w〉z, k = 1, . . . , n − 1.

The above equalities, together with p(z) = 0, give

〈w,Lny〉 = pn+1(z) = z2pn(z) − 〈w,Ln−1w〉z
Thus,

〈w,Lk(Ly + wz − z2y)〉 = 0, k = 0, . . . , n − 1,

i.e., Ly + wz = z2y. Reversing the above argument one has that Ly + wz = z2y implies
p(z) = 0.

Suppose now p(iν) = 0, ν ∈ R, so that Ly + iνw = −ν2y. Since 〈w, y〉 = iνθ + 1 we
have

〈(L + ν2)y, y〉 = ν2θ − iν.

Since L + ν2 is symmetric we have ν = 0. But ν �= 0 by det L �= 0. �

Remark 5.4. By the previous lemma we have that the polynomial p has no purely imaginary
roots. Those in the left half plane are real and correspond to eigenvalues, and those in the right
half plane give rise to non-normalizable solutions of the eigenvalue equations and correspond
to resonant states.
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6. Lax–Phillips scattering

From now on we suppose that

σpp(A) = ∅. (6.1)

Here we remark that the successive results hold, with the appropriate modifications, even
without this hypothesis which is just a convenient choice in order to simplify the exposition.

Since we already supposed σw(L) = ∅, by theorem 2.2, the above hypothesis means

{λ ∈ ρ(L) ∩ (0, +∞) : θ + 	(λ) = 0} = ∅,

i.e., we are supposing that there are no strictly positive solutions x of the equation

1

x
+

n∑
j=1

|wj |2
−λj + x2

= θ.

This is true if and only if

σ(L) ⊂ (−∞, 0), θ � 0.

Thus, hypothesis (6.1) is satisfied by both examples 4.1 and 4.3.
By lemma 5.3, (6.1) implies that the polynomial p has no negative real root and that the

complex ones (which appear in complex-conjugate pairs since p has real coefficients) are all
contained in the right half plane. Thus,

σpp(A) = ∅ ⇐⇒ Roots(p) ⊂ {z ∈ C : Re(z) > 0} .

By functional calculus, since A is injective and negative by (6.1) we have that

Ut
◦ =

(
cos t

√−A
√−A

−1
sin t

√−A

−√−A sin t
√−A cos t

√−A

)
.

Moreover Ut
◦ extends to a strongly continuous unitary group

Ut : H → H,

where H is the Hilbert space given by the completion of H◦ with respect to the scalar product
corresponding to energy norm

‖(φ, y, φ̇, ẏ)‖E := E(φ, y, φ̇, ẏ)1/2,

Remark 6.1. By theorem 2.2 our hypothesis σpp(A) = ∅ says that A has purely absolutely
continuous spectrum. Thus,

lim
t→±∞ ‖y(t)‖ = 0.

Indeed by functional calculus and Riemann–Lebesgue lemma, denoting by P(dλ) the
projection-valued measure corresponding to A, one has, for any (φ, y, φ̇, ẏ) ∈ H◦,

lim
t→±∞ λiyi(t) = lim

t→±∞〈√−A(0, êi ),
√−A cos t

√−A(φ, y) + sin t
√−A(φ̇, ẏ)〉L2(R+)⊕h

= lim
t→±∞

∫ ∞

0
cos t

√
λ〈√−A(0, êi ), P (dλ)

√−A(φ, y)〉L2(R+)⊕h

+ lim
t→±∞

∫ ∞

0
sin t

√
λ〈√−A(0, êi ), P (dλ)(φ̇, ẏ)〉L2(R+)⊕h = 0

Analogously, one has

lim
t→±∞ ‖ẏ(t)‖ = 0.
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Define

F := {(f−, f+) ∈ S0(R) × S0(R) : p(∂x)f− + p(−∂x)f+ = 0},
where

S0(R) :=
{
f ∈ S(R) :

∫
R

f (x) dx = 0

}
≡ {f ∈ S(R) : f = g′, g ∈ S(R)}.

By considering the Fourier transform (denoted by ˆ) of the differential equation

p(∂x)f− + p(−∂x)f+ = 0, (6.2)

one obtains

p(iκ)f̂ −(κ) + p(−iκ)f̂ +(κ) = 0.

Thus one has the following result, which permits to define what will be the scattering operator.

Lemma 6.2.

(f−, f+) ∈ F ⇐⇒ f̂ +(κ) = − p(iκ)

p(−iκ)
f̂ −(κ).

Since p has real coefficients, we have∣∣∣∣ p(iκ)

p(−iκ)

∣∣∣∣ = 1,

therefore

Sp : S0(R) → S0(R), (Spf ) ˆ(k) := − p(iκ)

p(−iκ)
f̂ (κ)

extends to a unitary map on L2(R).
Let φ(t) be the solution of (5.2) with initial data (φ, y, φ̇, ẏ) ∈ D. Then,

φ(t, x) = a(x + t) + b(t − x),

where the couple (a, b) is determined on a half line up to a constant c by

a(x) = −1

2

∫ +∞

x

(φ̇(y) + φ′(y)) dy + c, x � 0, (6.3)

b(−x) = 1

2

∫ +∞

x

(φ̇(y) − φ′(y)) dy − c, x � 0. (6.4)

The functions a(x) and b(−x) are then determined for the remaining values of x < 0 by
solving the differential equation

p(∂x)a + p(−∂x)b = 0. (6.5)

The following central result holds.

Theorem 6.3. The map I◦ ≡ (I−
◦ , I +

◦ ) defined by

I◦ : D → F, I◦(φ, y, φ̇, ẏ) := (f−, f+), f− = a′, f+ = b′.

is one to one and extends to a unitary map

I : H → Graph(Sp).
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Proof. It is easy to check that the map I◦ : D → F is injective. It is surjective too. Indeed,
if (f+, f−) ∈ F then I◦(φ, y, φ̇, ẏ) = (f+, f−) where

(φ, y, φ̇, ẏ) = (φ,M−1v(φ), φ̇,M−1v(φ̇)),

φ(x) = a(x) + b(−x), φ̇(x) = a′(x) + b′(−x),

a(x) :=
∫ x

−∞
f−(y) dy, b(x) :=

∫ x

−∞
f+(y) dy.

Let us now show that

‖(φ, y, φ̇, ẏ)‖2
E = ‖I−

◦ (φ, y, φ̇, ẏ)‖2
2 + ‖I +

◦ (φ, y, φ̇, ẏ)‖2
2.

Since

I +
◦ = SpI−

◦
and Sp is unitary we need to show that

‖(φ, y, φ̇, ẏ)‖2
E = 2‖I−

◦ (φ, y, φ̇, ẏ)‖2
2.

Let (φ(t, x), y(t), φ̇(t, x), ẏ(t)) the solution of


φ̈(t, x) − φ′′(t, x) = 0

ÿ(t) − Ly(t) − wφ′(t, 0+) = 0

θφ′(t, 0+) + φ(t, 0+) − 〈w, y(t)〉 = 0

(6.6)

with initial data (φ(x), y, φ̇(x), ẏ). Then, by using the evolution equation for y and the
boundary conditions, one has

d

dt
(‖ẏ(t)‖2 − 〈y(t), Ly(t)〉 − θ |φ′(t, 0+)|2) = φ̇∗(t, 0+)φ

′(t, 0+) + (φ′)∗(t, 0+)φ̇(t, 0+)

(6.7)

and so∫ ∞

0
(φ̇∗(t, 0+)φ

′(t, 0+) + (φ′)∗(t, 0+)φ̇(t, 0+)) dt = −(‖ẏ‖2 − 〈y, Ly〉 − θ |φ′(0+)|2).
By conservation of energy, one has

2E(φ, y, φ̇, ẏ) = ‖φ̇‖2
2 + ‖φ′‖2

2 + ‖ẏ‖2 − 〈y, Ly〉 − θ |φ′(0+)|2

=
∫ ∞

0
(φ̇∗(x)φ̇(x) + (φ′)∗(x)φ′(x)) dx

−
∫ ∞

0
(φ̇∗(t, 0+)φ

′(t, 0+) + (φ′)∗(t, 0+)φ̇(t, 0+)) dt.

Inserting into the last equation φ(x, t) = a(t + x) + b(t − x) and using b′ = Spa′, we have

E(φ, y, φ̇, ẏ) = 2‖b′‖2
2 = 2‖I−

◦ (φ, y, φ̇, ẏ)‖2
2.

�

We now define the maps R±
◦ : D → S0(R) by

R±
◦ (φ, y, φ̇, ẏ)(x) := I±

◦ (φ, y, φ̇, ẏ)(−x)

and the orthogonal spaces H± as the closure, with respect to the energy norm, of

D± := {
(φ, y, φ̇, ẏ) ∈ D : R±

◦ (φ, y, φ̇, ẏ) ∈ S±
0 (R)

}
,
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where

S±
0 (R) := {f ∈ S0(R) : f (x) = 0,±x � 0}.

The next theorem shows that the subspaces H− and H+ are incoming and outgoing in the sense
of Lax–Phillips scattering theory (see [11, 15], section XI.11). The proof is a straightforward
consequence of the previous definitions.

Theorem 6.4. The subspace H− is incoming and the subspace H+ is outgoing, i.e.,

UsH− ⊂ UtH−, s < t � 0,
⋂
t<0

UtH− = {0},
⋃
t∈R

UtH− = H,

U tH+ ⊂ UsH+, t > s � 0,
⋂
t>0

UtH+ = {0},
⋃
t∈R

UtH+ = H.

By the previous theorem and by [11], chapter II, sections 2 and 3, there follows

Theorem 6.5. The unitary maps

R± : H → L2(R),

defined as the closures of the maps R±
◦ , provide incoming and outgoing translation

representations of Ut , i.e.,

R±Ut(R±)−1 = T t , R±H± = L2(R±), S∗
p = R+(R−)−1,

where

T t : L2(R) → L2(R), T tf (x) := f (x − t).

Proof. The thesis follows from theorem 6.3 and from simple computations. Otherwise one
can use, as we said, the general theory contained in [11]. �

7. The Lax–Phillips semigroup

We are now interested in the evolution of the states which are neither incoming in the past nor
outgoing in the future. To this end, one defines

Zt := PUtP,

where P is the orthogonal projection onto

K := H � (H− ⊕ H+).

Since H+ and H− are orthogonal it is known (see [11, 15] section XI.11) that Zt is a strongly
continuous semigroup of contractions on K for positive times:

∀t � 0, Zt : K → K, ‖Zt‖ � 1, lim
t↑∞

Zt = 0.

The next theorem completely characterizes such a semigroup (let us remark that, by (6.1), all
the roots of p have positive real part).

Theorem 7.1. The vector space K is finite dimensional,

dimK = deg(p).
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It is generated by the vectors

(R+)−1φkj , k = 0, 1, . . . , νj − 1, j = 1, . . . , m,

φkj (x) :=
{

xk ezj x for x � 0

0 for x > 0,

(7.1)

where z1, . . . , zm are the roots of the polynomial p and ν1, . . . , νm the respective multiplicities.
Moreover,

Zt = e−tB, σ (B) = {z1, . . . , zm},
and the matrix representing B with respect to the basis (7.1) is the direct sum B = ⊕m

j=1Bj

where Bj is the νj × νj matrix:


zj 1 0 · · · 0

0 zj 2 · · · ...

0 0 zj

. . . 0
...

...
. . .

. . . νj − 1
0 0 · · · 0 zj




.

Proof. Since R+ : H → L2(R) is unitary, R±H± = L2(R±) and R+(R−)−1 = S∗
p, we have

R+K = L2(R) � ((L2(R−) ∩ S∗
pL2(R−)) ⊕ L2(R+)).

By our hypotheses p(iζ ) �= 0 for any ζ in the upper complex plane C+. Thus by Paley–Wiener
theorems, the analytic extension to C+ of the Fourier transform of f ∈ S−

0 ∩ S∗
pS−

0 ,

f̂ (ζ ) = −p(−iζ )

p(iζ )
ĝ(ζ ),

has no poles and has zeros of order νj at izj , i.e.,

dkf̂ (ζ )

dζ k

∣∣∣∣∣
ζ=izj

= (−i)k√
2π

∫ 0

−∞
xk ezj xf (x) dx = 0, k = 0, 1, . . . , νj − 1.

Thus,

L2(R−) ∩ S∗
pL2(R−) = {xk ezj x, k = 0, 1, . . . , νj − 1, j = 1, . . . , m}⊥

and the finite-dimensional subspace K is generated by vectors (7.1). These vectors are
independent and so the dimension of K is

∑m
j=1 νj = deg p. To determine the action of Zt

on K it is enough to note that the evolution of vectors (7.1) in the outgoing representation is
given by

φkj (x − t) ≡ (x − t)k ezj (x−t)χ(−∞,0](x − t).

Thus,

d

dt
φkj (x − t)

∣∣∣∣
t=0

= −(kφk−1,j (x) + zjφkj (x))

and the proof is completed. �
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